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Abstract The properties of antiferromagnetic Heisenberg S = 4 ladders with two, three and 
four chains are expanded in the ratio of the inmchain and intezchain coupling constants. A 
simple mapping procedure is intmduced to relate the four- and wo-chain ladders, which keeps 
to moderate values of the expansion parameters. A second-order calculation of the spin gap to 
the lowest triplet excilarion in the two- and fourchain ladders is found to be quite accurate, 
even at the isotropic point where the couplings are equal. Similar expansions and mapping 
procedures are presented for the three-chain ladders, which are in the same universality clas as 
single chains. 

1. Introduction 

The study of antiferromagnetic Heisenberg spin-; ladders has recently become of great 
interest because they offer the possibility of realizing spin liquid states with short- 
range RVB (resonance valence bond) character [l-51. Experimental systems currently 
being investigated are (VOkPZO, [6,7] and the homologous series of compounds 
Srn-p&n+lOl, [8,9]. The main evidence to date comes from numerical investigations 
using both Lanczos diagonalization of finite ladders [I, 2, IO], density-matrix renormalization 
p u p  [SI, and quantum transfer-matrix methods [Ill. These studies have shown that the 
low-energy properties of ladders are governed by fixed-point behaviour determined by the 
limit of strong interchain and weak intrachain coupling. In this paper we present analytic 
expansions about this strong-coupling limit for ladders with up to four legs (or chains). We 
compare these expansions with the numerical results and find that they hold qualitatively, 
but not always quantitatively, down to the isotropic limit (equal interchain and intrachain 
couplings). Furthermore, we introduce a mapping scheme to relate the four-chain ladder to 
the simple (i.e. two-chain) ladder and the threechain ladder to the single chain. 

The Hamiltonian of such a ladder takes the form 

H = JS ,  . S, +E J,s,. s,,,. 
U s 

The intrachain coupling is J and the interchain coupling across the rungs is J l .  The 
summation over the length of the chains-which will eventually tend to infinity-is denoted 
by ++, and the summation over the number of chains running parallel is denoted by $. 

In the strong-coupling limit JI >> J ,  the part of the Hamiltonian with the sum dong the 
chains is treated as a perturbation of the system of uncoupled rungs. For the simplest spin 
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ladder (two chains) the strong-coupling perturbation expansion up to thiid order in J /  J i  
is performed in section 2. Ladders with three chains coupled together will be discussed in 
section 3 and a mapping to the single Heisenberg spin-2 chain with an effective coupling 
determined by the splitting between the ground state and the first excited state of a 3 x 2 
spin cluster. Finally, the case of four-chain ladders is treated in section 4 using two different 
approaches. First, the four chains are considered as a system of two simple ladders running 
parallel, with a small coupling J; between the two adjacent chains. Second, the four chains 
are treated in the same way as the simple ladder by starting in the limit of non-interacting 
rungs, each with four spins. In the second c a s e i n  analogy to the threechain system-a 
mapping to the simple ladder is performed. 

2. Two coupled spin-4 chains: the simple spin ladder 

The best-studied system is the simple spin-i ladder, i.e. two parallel spin-; chains strongly 
coupled together. The Hamiltonian has the form 

H = H O + H '  (2) 

where Ho and HI are given by 

The intrachain (interchain) coupling is given by J (respectively JI ) ,  while Sk denotes 
the spin operator on the Rth mng on chain i .  For chains of length L periodic boundary 
conditions are introduced by defining Si+, E Si. 

The eigenstates of the rung Hamiltonian Hj are given by a singlet state Is) with energy 
.Es = - ~ J L  and three triplet states It") with spin-z component U = -1,O, 1 and energy 
Et = $ J I .  The eigenstates of Ho are direct products of rung states. 

2.1. Spin gap anddkperswn relation of magmn excitations 

When applying perturbation theay in J / J I  for the strong-coupling limit, the first-order 
correction to the ground-state energy vanishes, since H' painvise excites two adjacent 
singlets of the unperturbed ground state 10) = I s . .  .s) to a linear combination of triplets 
with total spin S = 0 

R 
H'IO) = $ J Is .  . . (toto - t+t- - t-t') . . . s). 

R 
(5) 

This excitation leads to a correction of the ground-state energy. 
perturbation in the strong-coupling limit, the ground-state energy per Iung is 

Up to third-order 
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The first excited state of the unperturbed ladder is obtained by promoting one rung to 
a triplet state. The L-fold degeneracy of this state is l i e d  in first-order perturbation in the 
strong-coupling l i t  To first order in J / J I  the eigenstates are given by Bloch states: 

where the Zth rung is excited to a triplet with Sz = c. The excitation energy o ( k )  for 
magnon excitations up to third-order J /  J I  in the strong-coupling limit is 

_-  o(k) - 1 +(J/JJcosk+ a(J/J&3 - C O S ~ ~ )  
JL 

- $ ( J /  J1)'(2 COS k +  COS 2k - COS 3k - 3). 

To second order this result is equal to that obtained by Barnes and co-workers in [21, except 
for the additional second-order term cc cos2k. The energy has a minimum at k = z. 
Therefore, the spin gap A = W ( R )  is 

JL 

In figure 1 the dispersion relation in second and third order is plotted for a ratio of 
J / J I  = 0.5. The third-order correction improves the agreement to numerical data from [2]. 
The deviation near k = 0 is due to two-magnon processes. Figure 2 shows the spin gap 
in second and third order compared to numerical data for a 2 x 8 Heisenberg ladder [l]. 
At the isotropic point J / J L  = 1 results from Barnes and co-workers [2] for 2 x 8 and 
2 x 00 ladders are included. In the isolropic region, the thud-order correction unfortunately 
leads to worse agreement than the second-order correction, which is surprisingly good in 
the infinite-length limit for the simple Heisenberg spin ladder. 
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Figure 1. Dispersion relation of simple Heisenberg 
spin-f ladder for JJJL = OS.  The dah of exact 
diagonaliration are taken from PI. 

Figure 2. Spin gap for a magnon excitation of simple 
Heisenberg spin-f ladder. The exmpalated value for 
2 x CO is taken from 121. 
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3. Ladders with three spin-; chains 

A system of three coupled spin-; chains has a degenerate ground state in the strong-coupling 
l i i i t  which leads to an additional complication compared to the study of the simple ladder (or 
any other system of an even number of chains coupled together). White ancl co-workers [5] 
give an explanation of the fundamental difference of an even and odd number of spin chains 
coupled together as being due to the behaviour of topological spin defects. Since the rung 
states are already degenerate, perturbation theory for degenerate systems must be used from 
the beginning. This can be realized by mapping the system to the single Heisenberg spin- 
$ chain-which has been studied extensively-using an effective coupling in first-order 
perturbation in J / J i .  Later, we use the exact diagonalization of a 3 x 2 spin cluster to 
determine the effective coupling. 

The Hamiltonian of the system is given in analogy to that of the ladder by 

X = H O + H '  (10) 

with 

Figure 3. (a) Thc m g  energies for the ulree-chain ladder. (b) These combine to give the 
eigenenergies of a pair of mgs. and under the action of n' uley split yielding the specfllm for 
a 3 x 2 cluster. 
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The energy levels of a rung system together with their degeneracy are depicted in 
figure 3(a). The two spin-f states are denoted by Id") (doublet), U corresponding to 
Sz = 3 ~ 4 ,  and the spin-2 state. by lqa) (quartet) with E corresponding to Sz = -4. -f, f, 4. 

The energy levels of an uncoupled pair of rungs (with Hamiltonian H o  = H ~ = , + H ~ = , )  
and their splitting into spin subspaces upon switching on the perturbation H' = Hi=l  are 
shown in figure 3(b). 

In first-order perturbation theory the ground state of a pair of rungs is 

Eg = - ~ J I  - S J  (13) 

and the splitting to the lowest triplet is equal to J .  The effective coupling in first-order 
perturbation theory in the strong-coupling limit is then 

J e t  5 J .  (14) 

2 2 
s=o I I s=1 I 

p p : E q  
L5 -2 

0.0 0.5 1.0 0.0 0.5 1 .o 

0.0 0.5 1.0 0.0 0.5 1 .o 
JIJ. JIJ. 

Figure 4. Diagonalization of 3 x 2 duster classified by total spin S 

The results of the exact diagonalization of a 3 x 2 cluster are shown in figure 4. The 
separation of the second from the first excited state is greater than the splitting Jar of the 
singlet and the triplet, reaching its minimum of E J& at the isotropic point J / J I  = 1. Thus 
the mapping should give reasonable results for temperatures ~ B T  < J a .  At isotropy, from 
figure 5 we obtain a value Jer = 0.825. A more complete density matrix renormalization 
group (DMRG) study of isotropic Heisenberg coupled chains by White and co-workers 151 
leads to qualitatively comparable results. They consider finite ladders with open boundary 
conditions so that there is a finite excitation energy determined by the velocity of the 
des Cloizeaux-Pearson mode. In a single chain this is proportional to the coupling constant. 
The ratio of these velocities in the three-chain and one-chain systems gives a direct measure 
of renormalized coupling Jeff % 0.68. 
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Figure 5. Effective coupling obtained by mapping the 
threechain to the simple chain. 

Figure 6. Dispersion relation for double-Heisenberg 
spin-4 ladder. 

4. Ladders with four coupled spin-: chains 

To study the ladders with four parallel coupled Heisenberg spin-; chains in the strong- 
coupling limit, two different approaches are taken. First, the four chains will be treated 
as two simple ladders coupled together and expanded around the strong-rung coupling 
limit. Second, we map the four-chain system to a simple double-chain ladder with 
renormalized coupling constants. The Hamiltonian of this system is the sum of three terms 
H = H o +  H' + H 2  with 

As in the doublechain system, the interchain coupling (coupling between chains one 
and two and between three and four) is .I1 and the infsachain coupling is J .  Periodic 
boundary conditions are again introduced by Si,, Si. The coupling between the two 
M e r s  is J;. 

4.1. Two coupled spin-; ladders 

The part Ho + H' of H is the sum of two simple ladder Hamiltonians: 

Ho + H' 3 Hy +Hi. (18) 

The subscripts U and 1 denote simple ladder Hamiltonians (2) on the upper and lower simple 
ladder respectively. 

To determine the ground-state energy and the energy of the low-lying excitations, 
perturbation in J and J; in the strong coupling limit J = J; < JL up to second order 
is applied. The first excited state is 2 x 3L-fold degenerate, the factor two arising since 
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promoting a singlet to a triplet on one rung can be done on either of the two coupled 
ladders. The L-fold degeneracy is lied as in the simple ladder system by the perturbation 
H’ (transforming to Bloch states); the remaining threefold degeneracy is a spin degeneracy. 
The second perturbing Hamiltonian H 2  will lift the twofold degeneracy into even and odd 
parity states, the parity transformation Pch& being defined by reversing the chain order 

: i -+ 5 - i). 
For the ground state the energy per rung to second order in J and JI  is 

With the corrections obtained for the first excited state with odd (-) and even (+) parity, 
the dispersion relation for the four-chain system as two coupled ladders up to second-order 
perturbation in the strong-coupling limit is 

The dispersion relation for the two branches is shown in figure 6 for J = JL = ~ J L .  
Figure 7 shows the spin gap for the two branches. 

JIJ ,  

Figure 7. Spin gap for a mag” of double Heisenberg 
spin.; ladder. 

Figure 8. Dispersion relation for four coupled 
Heisenberg spin-: chains. 

4.2. Four coupled spin-; chains 

The Hamiltonian is again of the form (15H17). The interaction Hamiltonian H2 between 
ladders will not be treated as a perturbation of the one-rung eigenstates of the double ladder, 
but instead exact eigenstates of the sum No + H 2  are the basis stam for a perturbative 
treatment of the intrachain coupling J .  Additionally, the problem is mapped to the simple 
ladder by exact diagonalization of the 4 x 2 cluster. 
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Figure 9. Spin gap for a rpagnon of Four Heisenberg Figure 10. Emgjes  of 4 x 2 duster, 
spin-$ chains. 

4.2.1. Exact one-rung eigenstates. The 16 one-rung eigenstates of Ho + HZ are denoted by 

19) Eb = -+JI + SJJ: + J T  
lq') Eq = + J;). 

There are two singlets Is& three niplets IC), 1%) and I$) with Sz components U = -1, 0 , l  
and a quintet 19") with S' components 5 = -2, -1,0,1,2. 

For JL = J I ,  the ground-state energy per spin of the four-chain system is 

up to second order in J /  J I .  By the same reasoning as for the double ladder, the coupling 
J i  leads to a splitting of the fist excitation from the ground state into an even- and odd- 
parity state. For the odd-parity state the dispersion relation for the low-lying excitations 
of four coupled Heisenberg spin-4 chains up to second-order perturbation thwry in the 
seong-coupling limit is 

-- - 0.659+ 1.075(J/J~)cosk+ (J/JL)2(1.086-0.035cosk-0.469cos2k) (23) 

0' (k) 

JL 

and 

- = 1.366 + 0.667(J/J~) COS k + (J/J&1.826 - 1.155 COS k - 0.081 Cos2k) (24) 
JL 

for the even-parity state. The dispersion relation for the two branches is shown in figure 8. 
For the odd-parity branch, the spin gap minimum is always at k = IT. On the other hand, 
the minimum of the even-parity branch jumps from k = 7c to k = 0 at J / J L  = 0.6. This 
explains the kink in the curve of the even-parity spin gap in figure 9. 
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4.3. Mapping to an effective simple lndder 

As in section 3, let us map the four-chain ladder into an effective simple ladder to determine 
the spin gap. Throughout this section we again assume J; = J I .  To this end, we calculate 
the eigenenergies of a 4 x 2 cluster, and determine the effective coupling constants of the 
effective simple ladder, J' = J * ( J ,  JL), Jf. = J;(J,  JL) ,  so as to reproduce the same 
low-energy spectrum. In this approximation, the spin gap of the four-chain ladder is then 
given by that of the simple ladder as 

ArOur-cdJ, Jd = Atwa-ehain(J*(J, JA JTCJ, Jd). (25) 

The energy spectrum of a 2 x 2 cluster is easily calculated. The ground state is a spin 
singlet, and there are two magnons. bonding and antibonding combinations of the two states 
in which one rung is a spin singlet and the other is a triplet. The energies of these three 
lowest states are 

= -&* + J;) - 7 J * Z  - J*J; + q2 (26) 

El,* = - fJT iz $J*.  (27) 

These three stat= are sufficient to determine the coupling constants: 

J* = El,+ - E l , -  (28) 

J L  * - - ,/D2 - DJ* - 1 2 J * z +  $ J' (29) 

where D = ;(El,+ + El , - )  - EO is the average energy separation between the ground-state 
singlet and the two triplets. There is one other spin triplet consisting of two magnons, with 
energy El,tl = ;(JT - J * ) .  

Figure 10 shows the energy levels of the 4 x 2 cluster as a function of the intrachain 
coupling, J .  The ground state is a spin singlet and there are two triplets above it. The 
two triplets are split with a separation increasing with J .  This splitting corresponds to the 
bandwidth of propagating magnons along the chain direction. At around J / J l  - 0.64, 
another triplet goes down and becomes lower than .E,,+. Thii triplet is the two-magnon 
state. Therefore, this crossing corresponds to the point where the bottom of the two-magnon 
continuum becomes lower than the top of the one-magnon mode. However, these two triplet 
eigenstates, having different parities with respect to the mirror symmetty, Pcbain, do not mix 
with each other, and this level crossing does not have significant consequences. 

The energy spectrum shown in figure 10 has the same structure as the 2 x 2 system, 
at least for small J .  The corresponding effective couplings are determined by (28) and 
(29). The result is shown in figure 11. The mapping breaks down for large couplings, 
J / J l  t 0.70, where the condition D 2 + l ) (El ,+  - EL,-) ,  which is necessary for a 
real JT, is no longer satisfied. 

We can now estimate the spin gap of the four-chain ladder by using (25). Here we use 
a Pad6 approximation for the Arwo-kaia determined by the strong-coupling limit (9) and the 
weak-coupliig asymptotic form, A K JL [12]: 

Awo-ehaidJ. Jd = JLG(JL/J)  (30) 

(2 + 2a)xZ + (1 - 3a)x + 2a 
G(x) = 

(2 + k ) x 2  + (3 - U ) X  + 2 
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Figure 11. Effective couplings when the four-chain 
ladder is mapped to the simple ladder. 

Figure 12. Spin gap of the four-chain ladder calculated 
by mapping to a simple ladder. 

where Q = l im, , , oArw0-~ /J~ .  This Pad6 approximant has a correct asymptotic form 
in both limits, J I / J  + 00 and J I / J  4 0. We use here a = 1 determined by 
A o u a - ~  = 0.5 at J l  = J ,  but this form does not agree so well with the numerical 
results [2] at 0 < J I / J  i 1. 

Figure 12 shows the result of the spin gap for the four-chain ladder. The gap is obtained 
by using (31) for (25) with the values of J* and J; shown in figure 11. The values 
determined by numerical diagonalization [S, 101 are included at JL = J .  The result of the 
second-order perturbation (23) is also included. This mapping shows a correct tendency. 

5. Conclusions 

In this paper we have presented the results of analytic expansions about the limit of strong 
interchain coupling. It is convenient to expand around this shong-coupling limit since the 
qualitative behaviour, and therefore the universality class of the system, remains unchanged. 
An analytic expansion allows one to examine the evolution of the system to the case of 
isotropic coupling. A magnon is an elementary S = 1 excitation, but the spin density 
distribution, which is localized on a single rung' in the strong-coupling limit, evolves 
continuously into a distribution spread over several mngs at isotropy. With decreasing 
interchain coupling the magnon spectrum changes its dispersion relation from a simple 
cosine band as the size of the magnons increases and longer range hopping matrix elements 
enter. An S = 1 magnon can be regarded as a bound state of two S = spinonst 
on individual chains, but since the interchain coupling changes the excitation spectrum 
completely this analogy is only qualitative at best. The four-chain ladder also has a spin 
gap to S = 1 magnon excitations and so belongs to the same universality class as the 
two-chain ladder, and a mapping procedure between four-chain and two-chain ladders is 
possible. This works well down to moderate values of the inIrachain to interchaii coupling, 
but not down to the isotropic limit where they are equal. On the other hand, a second-order 
perturbation for the spin gap works surprisingly well down to the isotropic limit. The tbree- 
chain ladder can be mapped onto the single chain and a simple mapping procedure is found 
to work quite well down to the isotropic limit when compared to numerical results. The 

t In a single spin chain, elementary excitations are topological S = 1. excitations usually now called spinons. and 
physical S = 1 excitations are two spinon scattering states, see [131. 
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low-energy behaviour of the two systems will be similar and the spinons will now extend 
over the three chains. Finally, the success of the expansion around the strong-coupling 
limit of the Heisenberg ladders encourages one to consider a corresponding expansion for 
the doped ladders described by a t-J model which have shown interesting results in mean 
field and numerical investigations 114,151. 
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